Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroergon ; 5: 1357905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464394

RESUMO

Introduction: Real-time physiological episode (PE) detection and management in aircrew operating high-performance aircraft (HPA) is crucial for the US Military. This paper addresses the unique challenges posed by high acceleration (G-force) in HPA aircrew and explores the potential of a novel wearable functional near-infrared spectroscopy (fNIRS) system, named NIRSense Aerie, to continuously monitor cerebral oxygenation during high G-force exposure. Methods: The NIRSense Aerie system is a flight-optimized, wearable fNIRS device designed to monitor tissue oxygenation 13-20 mm below the skin's surface. The system includes an optical frontend adhered to the forehead, an electronics module behind the earcup of aircrew helmets, and a custom adhesive for secure attachment. The fNIRS optical layout incorporates near-distance, middle-distance, and far-distance infrared emitters, a photodetector, and an accelerometer for motion measurements. Data processing involves the modified Beer-Lambert law for computing relative chromophore concentration changes. A human evaluation of the NIRSense Aerie was conducted on six subjects exposed to G-forces up to +9 Gz in an Aerospace Environmental Protection Laboratory centrifuge. fNIRS data, pulse oximetry, and electrocardiography (HR) were collected to analyze cerebral and superficial tissue oxygenation kinetics during G-loading and recovery. Results: The NIRSense Aerie successfully captured cerebral deoxygenation responses during high G-force exposure, demonstrating its potential for continuous monitoring in challenging operational environments. Pulse oximetry was compromised during G-loading, emphasizing the system's advantage in uninterrupted cerebrovascular monitoring. Significant changes in oxygenation metrics were observed across G-loading levels, with distinct responses in Deoxy-Hb and Oxy-Hb concentrations. HR increased during G-loading, reflecting physiological stress and the anti-G straining maneuver. Discussion: The NIRSense Aerie shows promise for real-time monitoring of aircrew physiological responses during high G-force exposure. Despite challenges, the system provides valuable insights into cerebral oxygenation kinetics. Future developments aim for miniaturization and optimization for enhanced aircrew comfort and wearability. This technology has potential for improving anti-G straining maneuver learning and retention through real-time cerebral oxygenation feedback during centrifuge training.

2.
Front Hum Neurosci ; 16: 976014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405076

RESUMO

After spinal cord injury (SCI), motoneuron death occurs at and around the level of injury which induces changes in function and organization throughout the nervous system, including cortical changes. Muscle affected by SCI may consist of both innervated (accessible to voluntary drive) and denervated (inaccessible to voluntary drive) muscle fibers. Voluntary activation measured with transcranial magnetic stimulation (VATMS) can quantify voluntary cortical/subcortical drive to muscle but is limited by technical challenges including suboptimal stimulation of target muscle relative to its antagonist. The motor evoked potential (MEP) in the biceps compared to the triceps (i.e., MEP ratio) may be a key parameter in the measurement of biceps VATMS after SCI. We used paired pulse TMS, which can inhibit or facilitate MEPs, to determine whether the MEP ratio affects VATMS in individuals with tetraplegia. Ten individuals with tetraplegia following cervical SCI and ten non-impaired individuals completed single pulse and paired pulse VATMS protocols. Paired pulse stimulation was delivered at 1.5, 10, and 30 ms inter-stimulus intervals (ISI). In both the SCI and non-impaired groups, the main effect of the stimulation pulse (paired pulse compared to single pulse) on VATMS was not significant in the linear mixed-effects models. In both groups for the stimulation parameters we tested, the MEP ratio was not modulated across all effort levels and did not affect VATMS. Linearity of the voluntary moment and superimposed twitch moment relation was lower in SCI participants compared to non-impaired. Poor linearity in the SCI group limits interpretation of VATMS. Future work is needed to address methodological issues that limit clinical application of VATMS.

3.
Restor Neurol Neurosci ; 40(3): 169-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35848044

RESUMO

BACKGROUND: Assessment of voluntary activation is useful in the study of neuromuscular impairments, particularly after spinal cord injury (SCI). Measurement of voluntary activation with transcranial magnetic stimulation (VATMS) is limited by technical challenges, including the difficulty in preferential stimulation of cortical neurons projecting to the target muscle and minimal stimulation of antagonists. Thus, the motor evoked potential (MEP) response to TMS in the target muscle compared to its antagonist may be an important parameter in the assessment of VATMS. OBJECTIVE: The purpose of this study was to evaluate the effect of isometric elbow flexion angle on two metrics in individuals with tetraplegia following SCI: 1) the ratio of biceps/triceps MEP amplitude across a range of voluntary efforts, and 2) VATMS. METHODS: Ten individuals with tetraplegia and ten nonimpaired individuals were recruited to participate in three sessions wherein VATMS was assessed at 45°, 90°, and 120° of isometric elbow flexion. RESULTS: In SCI participants, the biceps/triceps MEP ratio was not modulated by elbow angle. In nonimpaired participants, the biceps/triceps MEP ratio was greater in the more flexed elbow angle (120° flexion) compared to 90° during contractions of 50% and 75% MVC, but VATMS was not different. VATMS assessed in the more extended elbow angle (45° flexion) was lower relative to 90° elbow flexion; this effect was dependent on the biceps/triceps MEP ratio. In both groups, VATMS was sensitive to the linearity of the voluntary moment and superimposed twitch relationship, regardless of elbow angle. Linearity was lower in SCI relative to nonimpaired participants. CONCLUSIONS: Increasing the MEP ratio via elbow angle did not enable estimation of VATMS in SCI participants. VATMS may not be a viable approach to assess neuromuscular function in individuals with tetraplegia.


Assuntos
Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Braço/fisiologia , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético , Quadriplegia , Traumatismos da Medula Espinal/complicações
4.
Neurophysiol Clin ; 52(5): 366-374, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906169

RESUMO

OBJECTIVES: The purpose of this study was to determine the effect of common transcranial magnetic stimulation (TMS) waveforms (monophasic and biphasic) on resting motor threshold (RMT), active motor threshold (AMT), and motor evoked potential (MEP) amplitudes in the biceps and first dorsal interosseous (FDI) because waveforms may affect motor targets differently. We also determined test-retest reliability. METHODS: Ten individuals participated in two sessions of TMS delivered to the motor cortex. Monophasic stimulation to induce a posterior-anterior current in the brain (monoPA) and biphasic posterior-anterior then anterior-posterior (biPA-AP) were applied in each session in random order. In each session, there were four blocks of measurements (2 muscles × 2 waveforms) of RMT, AMT and MEPs at the hotspot location. MEPs were normalized to the maximum EMG signal. RESULTS: RMTs and AMTs were lower for monoPA compared to biPA-AP stimulation for the biceps (p<0.01) and FDI (p<0.01). Normalized MEPs were greater for monoPA compared to biPA-AP stimulation in the FDI (p=0.01) and not different in the biceps (p=0.86). Motor thresholds were not different between sessions suggesting high reliability (p<0.01). Normalized MEPs had very low reliability across sessions in the FDI, and moderate reliability in the biceps. DISCUSSION: Preliminary investigation suggests the effect of TMS waveform on motor thresholds is similar in upper limb proximal and distal muscles, but the effect differs per motor target for MEPs. Further, test-retest reliability of waveform effects was sensitive to target muscle. These findings may contribute to improve the efficacy and reliability of TMS for clinical use.


Assuntos
Braço , Estimulação Magnética Transcraniana , Humanos , Braço/fisiologia , Eletromiografia , Reprodutibilidade dos Testes , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia
5.
Restor Neurol Neurosci ; 39(5): 319-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34657854

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) can monitor or modulate brain excitability. However, reliability of TMS outcomes depends on consistent coil placement during stimulation. Neuronavigated TMS systems can address this issue, but their cost limits their use outside of specialist research environments. OBJECTIVE: The objective was to evaluate the performance of a low-cost navigated TMS approach in improving coil placement consistency and its effect on motor evoked potentials (MEPs) when targeting the biceps brachii at rest and during voluntary contractions. METHODS: We implemented a navigated TMS system using a low-cost 3D camera system and open-source software environment programmed using the Unity 3D engine. MEPs were collected from the biceps brachii at rest and during voluntary contractions across two sessions in ten non-disabled individuals. Motor hotspots were recorded and targeted via two conditions: navigated and conventional. RESULTS: The low-cost navigated TMS system reduced coil orientation error (pitch: 1.18°±1.2°, yaw: 1.99°±1.9°, roll: 1.18°±2.2° with navigation, versus pitch: 3.7°±5.7°, yaw: 3.11°±3.1°, roll: 3.8°±9.1° with conventional). The improvement in coil orientation had no effect on MEP amplitudes and variability. CONCLUSIONS: The low-cost system is a suitable alternative to expensive systems in tracking the motor hotspot between sessions and quantifying the error in coil placement when delivering TMS. Biceps MEP variability reflects physiological variability across a range of voluntary efforts, that can be captured equally well with navigated or conventional approaches of coil locating.


Assuntos
Potencial Evocado Motor , Estimulação Magnética Transcraniana , Braço/fisiologia , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...